Crystal Structure

Communications

ISSN 0108-2701

cis-Bis(dicyanamido)bis(1,10-phenanthroline)manganese(II) and cis-bis-(dicyanamido)bis(1,10-phenanthroline)zinc(II)

Zhe-Ming Wang et al.

Electronic paper

This paper is published electronically. It meets the data-validation criteria for publication in Acta Crystallographica Section C. The submission has been checked by a Section C Co-editor though the text in the 'Comments' section is the responsibility of the authors.

Crystal Structure
Communications
ISSN 0108-2701

cis-Bis(dicyanamido)bis(1,10-phenanthroline)manganese(II) and cis-bis-(dicyanamido)bis(1,10-phenanthroline)zinc(II)

Zhe-Ming Wang, Jun Luo, Bai-Wang Sun, Chun-Hua Yan,* Chun-Sheng Liao and Song Gao

State Key Laboratory of Rare Earth Materials Chemistry and Applications and PKUHKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, Peking University - Nonius BV Demo Lab. For X-ray Diffraction, Department of Chemistry, Peking University, Beijing 100871, People's Republic of China
Correspondence e-mail: chyan@chemms.chem.pku.edu.cn

Received 11 April 2000
Accepted 20 April 2000

Data validation number: IUC0000126
The title compounds are isomorphous, comprised of neutral monomeric $\left[M(\text { phen })_{2}(\mathrm{dca})_{2}\right][(\mathrm{I}): M=\mathrm{Mn},(\mathrm{II}): M=\mathrm{Zn}$; phen is 1,10-phenanthroline, $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}$; dca is dicyanamide, $\mathrm{C}_{2} \mathrm{~N}_{3}$] molecules. In the molecule, the divalent metal ion is in a distorted octahedral coordination environment formed by six N atoms from the phen and dca ligands. The $\mathrm{Mn}-\mathrm{N}$ [2.144 (2)-2.319 (2) \AA] and $\mathrm{Zn}-\mathrm{N}$ [2.075 (2)-2.245 (2) \AA] distances are in agreement with the difference in size of the two divalent ions.

Comment

Recently, dicyanamide has been used to construct many transition metal complexes with unusual coordination chemistry and physical properties (Manson et al., 1998, 1999; Kurmoo \& Kepert, 1998; Batten et al., 1999). Although many complexes with extended one-dimensional, two-dimensional or three-dimensional structures have been structurally characterized, the reports on monomeric dca complexes, as far as we know, are few and limited to some copper complexes (Dunaj-Jurco et al., 1996; Potocnak et al., 1995, 1996) only. During our systematic investigation of transition metal complexes with dicyanamide (dca), we isolated the two title compounds, (I) and (II). They are isomorphous and their structures are reported here.

Both crystal structures consist of neutral monomeric $\left[M(\text { phen })_{2}(\mathrm{dca})_{2}\right][(\mathrm{I}): M=\mathrm{Mn},(\mathrm{II}): M=\mathrm{Zn}$; phen is $1,10-$ phenanthroline; dca is dicyanamide] molecules. The metal ions are sixfold coordinated by four N atoms from two phen ligands and two terminal N atoms from two dca anions, in a distorted octahedral environment. The two phen ligands are in cis positions similar to the analogous $\left[\mathrm{Cu}(\mathrm{phen})_{2}(\mathrm{dca})_{2}\right]$ (Potocnak et al., 1995) and $\left[\mathrm{Mn}(\text { phen })_{2}(\mathrm{NCS})_{2}\right]$ compounds
(Holleman et al., 1994).

(I) $M=\mathrm{Mn}$
(II) $M=\mathrm{Zn}$

In complex (I), the two shorter $\mathrm{Mn}-\mathrm{N}$ (dca) distances [2.144 (2) and 2.151 (2) Å] are comparable to the $\mathrm{Mn}-$ $\mathrm{N}(\mathrm{NCS})$ distances in the monomeric complexes $\left[\mathrm{Mn}(\mathrm{phen})_{2}(\mathrm{NCS})_{2}\right]$ (Holleman et al., 1994) and $\left[\mathrm{Mn}\left(2,2^{\prime}-\right.\right.$ bipy $)_{2}(\mathrm{NCS})_{2}$] (Veidis et al., 1981), while typically ca $0.05 \AA$ shorter than those $\mathrm{Mn}-\mathrm{N}(\mathrm{dca})$ distances in $\mathrm{Mn}-\mathrm{dca}$ complexes with an extended structure, such as $\left[\mathrm{Mn}(\mathrm{dca})_{2} L\right][L$ is a pyridine-type ligand; 2.187 (6)-2.258 (3) \AA; Manson et al., 1999] and $\left[\mathrm{Mn}(\mathrm{dca})_{2} L_{2}\right]\left[L=\mathrm{DMF}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}\right.$ etc.; 2.179 (2)-2.233 (2) Å; Batten et al., 1999], in which dca acts as a bridging ligand to connect two Mn cations. The four Mn $\mathrm{N}($ phen $)$ distances $[2.257$ (2) -2.319 (2) \AA] are similar to the corresponding distances in $\left[\mathrm{Mn}(\text { phen })_{2}(\mathrm{NCS})_{2}\right]$ (Holleman et al., 1994), $\left[\mathrm{Mn}\left(2,2^{\prime}-\mathrm{bipy}\right)_{2}(\mathrm{NCS})_{2}\right]$ (Veidis et al., 1981) and $\left[\mathrm{Mn}(\mathrm{dca})_{2}\left(2,2^{\prime}\right.\right.$-bipy $\left.)\right]$ (Manson et al., 1999). But unlike $\left[\mathrm{Mn}(\mathrm{phen})_{2}(\mathrm{NCS})_{2}\right]$ (Holleman et al., 1994), in which the four $\mathrm{Mn}-\mathrm{N}$ (phen) bond distances show no significant difference, in (I), the four $\mathrm{Mn}-\mathrm{N}$ (phen) bonds can be obviously divided into two groups, i.e. 2.257 (2)/2.259 (2) \AA and 2.293 (2)/ 2.319 (2) A. The two longer $\mathrm{Mn}-\mathrm{N}($ phen $)$ bonds are trans to the dca ligands. In cis- $\left[\mathrm{Mn}\left(2,2^{\prime}-\mathrm{bpy}\right)_{2}(\mathrm{NCS})_{2}\right]$ (Veidis et al., 1981) and cis-[Mn(2,2'-bipy) $\left.)_{2} \mathrm{Cl}_{2}\right]$ (Lumme \& Lindell, 1988), the same effect is observed. The zinc complex, (II), shows a similar case. The $\mathrm{Zn}-\mathrm{N}($ phen $)$ distances [2.148 (2)2.245 (2) \AA] are comparable to the corresponding $\mathrm{Zn}-\mathrm{N}$ distances in $\left[\mathrm{Zn}(\text { phen })_{3}\right](\mathrm{TCNQ})_{2} \quad[2.135(5)-2.225(4) \AA$; Bencini et al., 1989], $\left[\mathrm{Zn}\left(2,2^{\prime}-\text { bipy }\right)_{3}\right]\left(\mathrm{ClO}_{4}\right)_{2} \quad[2.135(2)-$ 2.172 (3) \AA; Chen et al., 1995] and $\left[\mathrm{Zn}(\text { phen })_{2}\right]_{2}\left[\mathrm{~V}_{4} \mathrm{O}_{12}\right]$ [2.117 (4)-2.229 (4) Å; Zhang et al., 1997]. The two short $\mathrm{Zn}-$ $\mathrm{N}(\mathrm{dca})$ distances $[2.075$ (2) and 2.081 (2) \AA] are close to that found in $\left[\mathrm{Zn}(\mathrm{pbp})_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}[2.070(6)-2.123$ (6) \AA; Liu et al., 1996], in which the inter-ligand repulsion effect is less due to the ligand structure. So in both (I) and (II), the dca ligand with less steric hindrance gives shorter metal-N bonds, while the reverse is observed in Cu complexes $\left[\mathrm{Cu}(\text { phen })_{2}(\mathrm{dca})_{2}\right]$ (Potocnak et al., 1995) and [Cu(2,2'-bipy)(add)(dca)] (DunajJurco et al., 1996). The $\mathrm{Zn}-\mathrm{N}$ distances in (II) are about $0.08 \AA$ shorter than the corresponding $\mathrm{Mn}-\mathrm{N}$ distances in (I). This is in agreement with the difference between the Zn and Mn ionic radii (0.74 and $0.80 \AA$, respectively). The steric constraints of the phen ligand make the $\mathrm{N}-\mathrm{Mn}-\mathrm{N}$ angles in the range $72.48(7)-102.40(7)^{\circ}, \mathrm{N}-\mathrm{Zn}-\mathrm{N}$ angles in the range 75.75 (7)-99.12 (9) ${ }^{\circ}$, with the ideal value being 90°, and a range of $157.54(7)-165.73(7)^{\circ}$ for $\mathrm{N}-\mathrm{Mn}-\mathrm{N}$ angles and 161.14 (8) $-169.30(9)^{\circ}$ for $\mathrm{N}-\mathrm{Zn}-\mathrm{N}$ angles, with the ideal
value being 180°. Hence, the distortion of the ZnN_{6} moiety from the ideal octahedron is less than the MnN_{6} moiety.

The phen ligands are all planar in the two compounds, with the largest deviation of atoms from their mean plane less than $0.07 \AA$. The dihedral angle between the mean planes of the two phen is 79.67 (4) ${ }^{\circ}$ in (I) and 80.79 (4) ${ }^{\circ}$ in (II). The bond distances and angles in phen $[1.323$ (3)-1.448 (4) \AA and 116.4 (3)-124.7 (3) ${ }^{\circ}$, respectively] are all normal (Potocnak et al., 1996; Holleman et al., 1994). The dca ligands are also planar and the largest deviation of atoms from their mean planes are less than $0.02 \AA$. All $\mathrm{N}-\mathrm{C}$ distances of dca ligands, i.e. 1.125 (3) -1.140 (3) \AA for $\mathrm{N}-\mathrm{C}$ triple bonds and 1.277 (4)1.308 (4) \AA for $\mathrm{N}-\mathrm{C}$ double bonds, together with the $\mathrm{C}-\mathrm{N}-$ C angles of $123.0(3)-124.9(3)^{\circ}$ and $\mathrm{N}-\mathrm{C}-\mathrm{N}$ angles of 171.6 (3)-173.1 (3) ${ }^{\circ}$, are all comparable with values found in other dca complexes (Manson et al., 1998, 1999; Kurmoo \& Kepert, 1998; Batten et al., 1999; Potocnak et al., 1996, 1995). The bonding mode of dca to metal ions is angular as the metal $-\mathrm{N}-\mathrm{C}$ angles range from $164.5(2)$ to $166.7(2)^{\circ}$ (Potocnak et al., 1996).

Experimental

$\left[\mathrm{Mn}(\mathrm{phen})_{2}(\mathrm{dca})_{2}\right]:$ a 4 ml ethanol solution containing phenanthroline $\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2} \cdot \mathrm{H}_{2} \mathrm{O}, 59.5 \mathrm{mg}, 0.30 \mathrm{mmol}\right)$ and a 4 ml ethanol solution of $\mathrm{Mn}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ ($73.5 \mathrm{mg}, 0.30 \mathrm{mmol}$) were mixed and stirred for 5 min , then a 2 ml aqueous solution of $\mathrm{NaN}(\mathrm{CN})_{2}(26.7 \mathrm{mg}$, 0.30 mmol) was added to the above solution and stirred for another 5 min . The clear-brown solution was filtered. Brown block-shaped crystals were obtained after slow evaporation of the filtrate for one week. Yield 16%. Analysis calculated for $\mathrm{C}_{28} \mathrm{H}_{16} \mathrm{~N}_{10} \mathrm{Mn}$: C $61.43, \mathrm{H}$ 2.95, N 25.59 , Mn 10.04\%; found: C 60.02, H 3.11, N 25.44 , Mn 11.4% (by ICP). [$\left.\mathrm{Zn}(\text { phen })_{2}(\mathrm{dca})_{2}\right]$: the colourless block-shaped crystals of the Zn complex were obtained by the same route, using $\mathrm{Zn}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O} \quad(65.9 \mathrm{mg}, \quad 0.30 \mathrm{mmol})$ instead of $\mathrm{Mn}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$. Yield 15%. Analysis calculated for $\mathrm{C}_{28} \mathrm{H}_{16} \mathrm{~N}_{10} \mathrm{Zn}$: C 60.28, H 2.89, N 25.11, Zn 11.72\%; found: C 58.91, H 3.00 , N 23.85 , Mn 13.8\% (by ICP).

Compound (I)

Crystal data

```
\(\left[\mathrm{Mn}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{C}_{2} \mathrm{~N}_{3}\right)_{2}\right]\)
\(M_{r}=547.45\)
Monoclinic, \(P 2_{1} / c\)
\(a=9.7989\) (2) \(\AA\) 。
\(b=15.0160(5) \AA\)
\(c=17.7189(5) \AA\)
\(c=17.7189(5) \AA\)
\(\beta=104.5946(16)^{\circ}\)
\(V=2523.04(12) \AA^{3}\)
\(Z=4\)
```

$D_{x}=1.441 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 46192
reflections
$\theta=3.46-27.87^{\circ}$
$\mu=0.562 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, brown
$0.33 \times 0.30 \times 0.15 \mathrm{~mm}$

Data collection

Nonius KappaCCD diffractometer

CCD scans

Absorption correction: empirical (Blessing, 1995, 1997)
$T_{\text {min }}=0.892, T_{\text {max }}=0.922$
46192 measured reflections
6007 independent reflections

Refinement

Refinement on F^{2}
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0474 P)^{2}\right.$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$
$+0.7644 P]$
$w R\left(F^{2}\right)=0.110$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$S=1.008$
$(\Delta / \sigma)_{\text {max }}=0.001$
6007 reflections
417 parameters
All H -atom parameters refined
$\Delta \rho_{\text {max }}=0.41 \mathrm{e}_{\mathrm{max}}{ }^{-3}$
$\Delta \rho_{\text {max }}=0.41 \mathrm{e}^{2} \AA_{\text {min }}=-0.37 \mathrm{e} \mathrm{A}^{-3}$
Extinction correction: SHELXL
Extinction coefficient: 0.0037 (8)

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$ for (I).

Mn1-N5	$2.144(2)$	$\mathrm{Mn} 1-\mathrm{N} 2$	$2.2588(17)$
$\mathrm{Mn} 1-\mathrm{N} 8$	$2.151(2)$	$\mathrm{Mn} 1-\mathrm{N} 1$	$2.2927(17)$
$\mathrm{Mn} 1-\mathrm{N} 4$	$2.2569(19)$	$\mathrm{Mn} 1-\mathrm{N} 3$	$2.3192(19)$
N5-Mn1-N8	$98.44(9)$	$\mathrm{N} 2-\mathrm{Mn} 1-\mathrm{N} 3$	$88.60(6)$
$\mathrm{N} 5-\mathrm{Mn} 1-\mathrm{N} 4$	$94.38(8)$	$\mathrm{N} 1-\mathrm{Mn} 1-\mathrm{N} 3$	$85.40(6)$
$\mathrm{N} 8-\mathrm{Mn} 1-\mathrm{N} 4$	$98.78(7)$	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Mn} 1$	$126.67(17)$
$\mathrm{N} 5-\mathrm{Mn} 1-\mathrm{N} 2$	$102.40(8)$	$\mathrm{C} 12-\mathrm{N} 1-\mathrm{Mn} 1$	$114.61(13)$
N8-Mn1-N2	$93.46(7)$	$\mathrm{C} 10-\mathrm{N} 2-\mathrm{Mn} 1$	$125.75(15)$
N4-Mn1-N2	$157.54(7)$	$\mathrm{C} 11-\mathrm{N} 2-\mathrm{Mn} 1$	$116.01(14)$
N5-Mn1-N1	$88.39(7)$	$\mathrm{C} 13-\mathrm{N} 3-\mathrm{Mn} 1$	$127.57(17)$
N8-Mn1-N1	$165.73(7)$	$\mathrm{C} 24-\mathrm{N} 3-\mathrm{Mn} 1$	$114.93(15)$
$\mathrm{N} 4-\mathrm{Mn} 1-\mathrm{N} 1$	$93.13(6)$	$\mathrm{C} 22-\mathrm{N} 4-\mathrm{Mn} 1$	$125.05(19)$
$\mathrm{N} 2-\mathrm{Mn} 1-\mathrm{N} 1$	$72.76(6)$	$\mathrm{C} 23-\mathrm{N} 4-\mathrm{Mn} 1$	$116.77(15)$
N5-Mn1-N3	$165.18(8)$	$\mathrm{C} 25-\mathrm{N} 5-\mathrm{Mn} 1$	$164.47(19)$
N8-Mn1-N3	$90.68(8)$	$\mathrm{C} 27-\mathrm{N} 8-\mathrm{Mn} 1$	$166.2(2)$
N4-Mn1-N3	$72.58(7)$		

Compound (II)

Crystal data

$\left[\mathrm{Zn}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{C}_{2} \mathrm{~N}_{3}\right)_{2}\right]$
$M_{r}=557.88$
Monoclinic, $P 2_{1} / c$
$a=9.6800(3) \AA$
$b=15.0697(7) \AA$
$c=17.7166(8) \AA$
$\beta=104.628(2)^{\circ}$
$V=250.64(18) \AA^{3}$
$Z=4$
$D_{x}=1.482 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=557.88$
Mo $K \alpha$ radiation
Cell parameters from 35401
reflections
$\theta=3.47-27.85^{\circ}$
$\mu=1.022 \mathrm{~mm}^{-1}$
$T=293$ (2) K
$V=2500.64(18) \AA^{3}$
Block, colourless
$0.20 \times 0.20 \times 0.18 \mathrm{~mm}$

Data collection

Nonius KappaCCD diffractometer
3976 reflections with $I>2 \sigma(I)$
CCD scans
Absorption correction: empirical
$R_{\text {int }}=0.0614$
$\theta_{\text {max }}=27.85^{\circ}$
$h=-12 \rightarrow 12$
$k=-19 \rightarrow 19$
$T_{\text {min }}=0.799, T_{\text {max }}=0.837$
$l=-23 \rightarrow 23$
35401 measured reflections
5913 independent reflections

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0214 P)^{2}\right. \\
& +1.5124 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\text {max }}=0.32 \mathrm{e}^{\AA^{-3}} \\
& \Delta \rho_{\min }=-0.34 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.0008 \text { (4) }
\end{aligned}
$$

Table 2
Selected geometric parameters $\left(\AA,^{\circ}\right)$ for (II).

Zn1-N5	$2.075(3)$	Zn1-N2	$2.1498(19)$
$\mathrm{Zn} 1-\mathrm{N} 8$	$2.081(2)$	$\mathrm{Zn} 1-\mathrm{N} 1$	$2.2217(19)$
$\mathrm{Zn} 1-\mathrm{N} 4$	$2.148(2)$	$\mathrm{Zn} 1-\mathrm{N} 3$	$2.246(2)$

$\mathrm{N} 5-\mathrm{Zn} 1-\mathrm{N} 8$	$96.76(9)$	$\mathrm{N} 2-\mathrm{Zn} 1-\mathrm{N} 3$	$88.71(8)$
$\mathrm{N} 5-\mathrm{Zn} 1-\mathrm{N} 4$	$95.21(9)$	$\mathrm{N} 1-\mathrm{Zn} 1-\mathrm{N} 3$	$86.07(7)$
$\mathrm{N} 8-\mathrm{Zn} 1-\mathrm{N} 4$	$97.23(8)$	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Zn} 1$	$128.98(19)$
$\mathrm{N} 5-\mathrm{Zn} 1-\mathrm{N} 2$	$99.12(9)$	$\mathrm{C} 12-\mathrm{N} 1-\mathrm{Zn} 1$	$112.63(15)$
$\mathrm{N} 8-\mathrm{Zn} 1-\mathrm{N} 2$	$93.22(8)$	$\mathrm{C} 10-\mathrm{N} 2-\mathrm{Zn} 1$	$126.31(17)$
$\mathrm{N} 4-\mathrm{Zn} 1-\mathrm{N} 2$	$161.14(8)$	$\mathrm{C} 11-\mathrm{N} 2-\mathrm{Zn} 1$	$115.46(16)$
$\mathrm{N} 5-\mathrm{Zn} 1-\mathrm{N} 1$	$88.79(8)$	$\mathrm{C} 13-\mathrm{N} 3-\mathrm{Zn} 1$	$129.61(19)$
$\mathrm{N} 8-\mathrm{Zn} 1-\mathrm{N} 1$	$168.35(8)$	$\mathrm{C} 24-\mathrm{N} 3-\mathrm{Zn} 1$	$113.29(17)$
$\mathrm{N} 4-\mathrm{Zn} 1-\mathrm{N} 1$	$92.44(7)$	$\mathrm{C} 22-\mathrm{N} 4-\mathrm{Zn} 1$	$125.9(2)$
$\mathrm{N} 2-\mathrm{Zn} 1-\mathrm{N} 1$	$75.75(7)$	$\mathrm{C} 23-\mathrm{N} 4-\mathrm{Zn} 1$	$116.19(16)$
$\mathrm{N} 5-\mathrm{Zn} 1-\mathrm{N} 3$	$169.30(9)$	$\mathrm{C} 25-\mathrm{N} 5-\mathrm{Zn} 1$	$166.2(2)$
$\mathrm{N} 8-\mathrm{Zn} 1-\mathrm{N} 3$	$90.02(8)$	$\mathrm{C} 27-\mathrm{N} 8-\mathrm{Zn} 1$	$166.7(2)$
$\mathrm{N} 4-\mathrm{Zn} 1-\mathrm{N} 3$	$75.67(8)$		

All H atoms were located by difference Fourier synthesis and were refined isotropicaly.

For both compounds, data collection: KappaCCD Software (Nonius, 1998); cell refinement: HKL SCALEPAK (Otwinowski \& Minor, 1997); data reduction: HKL DENZO (Otwinowski \& Minor, 1997) and MAXUS (Mackay et al., 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1998); software used to prepare material for publication: SHELXL97.

This work was supported by the National Natural Science Foundation of China (Nos. 29701001, 29771001 and 29525101) and Founder Foundation of Peking University.

References

Batten, S. R., Jensen, P., Kepert, C. J., Kurmoo, M., Moubaraki, B., Murray, K. S. \& Price, D. J. (1999). J. Chem. Soc. Dalton Trans. pp. 2987-2997.

Bencini, A., Midollini, S. \& Zanchini, C. (1989). Inorg. Chem. 28, 1963-1969.
Blessing, R. H. (1995). Acta Cryst. A51, 33-37.
Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.
Chen, X. M., Wang, R. Q. \& Yu, X. L. (1995). Acta Cryst. C51, 1545-1547.
Dunaj-Jurco, M., Miklos, D., Potocnak, I. \& Jager, L. (1996). Acta Cryst. C52, 2409-2412.
Holleman, S. R., Parker, O. J. \& Breneman, G. L. (1994). Acta Cryst. C50, 867869.

Kurmoo, M. \& Kepert, C. J. (1998). New J. Chem. pp. 1515-1524.
Liu, C. M., Xiong, R. G., Zuo, J. L. \& You, X. Z. (1996). Polyhedron, 15, 20512055.

Lumme, P. O. \& Lindell, E. (1988). Acta Cryst. C44, 463-465.
Mackay, S., Gilmore, C. J., Edwards, C., Tremayne, M., Stuart, N. \& Shankland, K. (1998). MAXUS. University of Glasgow, Scotland, Nonius BV, Delft, The Netherlands, and MacScience Co. Ltd, Yokohama, Japan.
Manson, J. L., Arif, A. M., Incarvito, C. D., Liable-Sands, L. M., Rheingold, A. L. \& Miller, J. S. (1999). J. Solid State Chem. 145, 369-378.

Manson, J. L., Kmety, C. R., Huang Q., Lynn, J. W., Bendele, G. M., Pagola, S., Stephens, P. W., Liable-Sands, L. M., Rheingold, A. L., Epstein, A. J. \& Miller, J. S. (1998). Chem. Mater. 10, 2552-2560.
Nonius (1998). COLLECT. Nonius, Delft, The Netherlands.
Otwinowski, Z. \& Minor, M. (1997). Processing of X-ray Diffraction Data Collected in Oscillation Mode, Methods in Enzymology, Vol. 276, Macromolecular Crystallography, part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. London: Academic Press.

Potocnak, I., Dunaj-Jurco, M., Miklos, D. \& Jager, L. (1996). Acta Cryst. C52, 1653-1655.
Potocnak, I., Dunaj-Jurco, M., Miklos, D. \& Kabesova, M. (1995). Acta Cryst. C51, 600-602.
Sheldrick, G. M. (1997). SHELXL97 and SHELXL97. PC Versions. University of Göttingen, Germany.
Sheldrick, G. M. (1998). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Veidis, M. V., Dockum, B., Charron, F. F. Jr., Reiff, W. M. \& Brennan, T. F. (1981). Inorg. Chim. Acta, 53, L197-199.

Zhang, Y., Zapf, P. J., Meyer, L. M., Haushalter, R. C. \& Zubieta, J. (1997). Inorg. Chem. 36, 2159-2165.

